Full-Stack Business Automation Project Showcase

A comprehensive business process automation tool demonstrating end-to-end development capabilities. From responsive UI/UX design to backend API integration, showcasing the complete development lifecycle.

Frontend React-like UI
Backend API Integration
Full-Stack End-to-End
WorkflowAutomation.py
# Business Process Automation Engine
class WorkflowEngine:
    def __init__(self):
        self.workflows = []
        self.api_client = APIClient()
        self.notification_service = NotificationService()
    
    async def process_lead(self, lead_data):
        """Automated lead qualification pipeline"""
        try:
            # Score the lead using ML model
            score = await self.score_lead(lead_data)
            
            # Route based on score
            if score >= 80:
                await self.assign_to_sales_rep(lead_data)
                await self.send_priority_notification(lead_data)
            elif score >= 60:
                await self.add_to_nurture_campaign(lead_data)
            
            return {"status": "processed", "score": score}
        except Exception as e:
            await self.handle_error(e, lead_data)
    
    async def generate_report(self, period="monthly"):
        """Generate automated business reports"""
        data = await self.fetch_analytics_data(period)
        report = await self.create_report(data)
        await self.distribute_report(report)
        return report

Project Overview

A comprehensive business process automation platform inspired by experience at UNIT, demonstrating full-stack development capabilities from UI design to backend implementation.

Frontend Excellence

Responsive React-style UI with modern design patterns, component-based architecture, form validation, and seamless user experience.

Backend Integration

Python-based API services with Flask/FastAPI, database integration, authentication, and real-time data processing capabilities.

Process Automation

Intelligent workflow automation with lead scoring, automated notifications, report generation, and business intelligence dashboards.

Analytics & Reporting

Real-time analytics, automated report generation, data visualization, and business intelligence insights for decision making.

Technology Stack

HTML5 & CSS3

Semantic markup, CSS Grid, Flexbox, animations

Modern JavaScript

ES6+, async/await, modules, component architecture

Python Backend

Flask/FastAPI, SQLAlchemy, async processing

PostgreSQL

Relational database, complex queries, optimization

Chart.js

Data visualization, real-time charts, analytics

Security

JWT authentication, input validation, HTTPS

Frontend Development Showcase

Interactive demonstration of modern frontend development with responsive design, form validation, and dynamic user interfaces.

Lead Management Dashboard

New Lead Entry

Live Lead Scoring

--
Lead Score (0-100)

Recent Leads

Company Contact Industry Score Status Actions
No leads yet. Add your first lead using the form above!

Form Validation

Real-time client-side validation with custom error messages, regex patterns, and user-friendly feedback.

Responsive Design

Mobile-first approach with CSS Grid, Flexbox, and breakpoint optimization for all device sizes.

Interactive UI

Dynamic components, real-time updates, smooth animations, and intuitive user experience patterns.

Modern Design

Clean aesthetics, consistent design system, accessibility compliance, and professional UI components.

Backend Integration & API Design

Demonstrating backend development skills with Python/Flask, database integration, API design, and real-time data processing capabilities.

Backend Architecture

Frontend UI

React-style Components

Python API

Flask/FastAPI Server

ML Engine

Lead Scoring AI

PostgreSQL

Data Storage

Python API Service

Flask-based REST API with lead processing

# app.py - Flask API Server
from flask import Flask, request, jsonify
from flask_sqlalchemy import SQLAlchemy
from datetime import datetime
import joblib
import numpy as np

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'postgresql://localhost/leads'
db = SQLAlchemy(app)

# Load pre-trained ML model for lead scoring
lead_scoring_model = joblib.load('models/lead_scorer.pkl')

class Lead(db.Model):
    id = db.Column(db.Integer, primary_key=True)
    company_name = db.Column(db.String(200), nullable=False)
    contact_person = db.Column(db.String(100), nullable=False)
    email = db.Column(db.String(120), nullable=False)
    industry = db.Column(db.String(50))
    company_size = db.Column(db.String(20))
    budget = db.Column(db.String(20))
    score = db.Column(db.Integer, default=0)
    status = db.Column(db.String(20), default='new')
    created_at = db.Column(db.DateTime, default=datetime.utcnow)

@app.route('/api/leads', methods=['POST'])
def create_lead():
    try:
        data = request.get_json()
        
        # Validate required fields
        required_fields = ['company_name', 'contact_person', 'email']
        for field in required_fields:
            if not data.get(field):
                return jsonify({'error': f'{field} is required'}), 400
        
        # Create new lead
        lead = Lead(
            company_name=data['company_name'],
            contact_person=data['contact_person'],
            email=data['email'],
            industry=data.get('industry'),
            company_size=data.get('company_size'),
            budget=data.get('budget')
        )
        
        # Calculate lead score using ML model
        features = extract_features(data)
        lead.score = int(lead_scoring_model.predict([features])[0])
        
        # Auto-assign status based on score
        if lead.score >= 80:
            lead.status = 'hot'
            send_priority_notification(lead)
        elif lead.score >= 60:
            lead.status = 'warm'
        else:
            lead.status = 'cold'
        
        db.session.add(lead)
        db.session.commit()
        
        return jsonify({
            'id': lead.id,
            'score': lead.score,
            'status': lead.status,
            'message': 'Lead created successfully'
        }), 201
        
    except Exception as e:
        return jsonify({'error': str(e)}), 500

def extract_features(data):
    """Extract features for ML model"""
    # Industry scoring
    industry_scores = {
        'technology': 90, 'finance': 85, 'healthcare': 80,
        'manufacturing': 70, 'retail': 60, 'other': 50
    }
    
    # Company size scoring
    size_scores = {
        'enterprise': 100, 'large': 80, 'medium': 60,
        'small': 40, 'startup': 20
    }
    
    # Budget scoring
    budget_scores = {
        'over-500k': 100, '100k-500k': 80, '50k-100k': 60,
        '10k-50k': 40, 'under-10k': 20
    }
    
    features = [
        industry_scores.get(data.get('industry'), 50),
        size_scores.get(data.get('company_size'), 30),
        budget_scores.get(data.get('budget'), 30),
        len(data.get('description', '')) / 10,  # Description quality
        1 if '@' in data.get('email', '') else 0  # Email validity
    ]
    
    return np.array(features)

if __name__ == '__main__':
    with app.app_context():
        db.create_all()
    app.run(debug=True)

Database Schema

PostgreSQL tables and relationships

-- Database Schema Design
-- leads.sql

CREATE TABLE leads (
    id SERIAL PRIMARY KEY,
    company_name VARCHAR(200) NOT NULL,
    contact_person VARCHAR(100) NOT NULL,
    email VARCHAR(120) NOT NULL UNIQUE,
    phone VARCHAR(20),
    industry VARCHAR(50),
    company_size VARCHAR(20),
    budget VARCHAR(20),
    description TEXT,
    score INTEGER DEFAULT 0 CHECK (score >= 0 AND score <= 100),
    status VARCHAR(20) DEFAULT 'new' CHECK (status IN ('new', 'cold', 'warm', 'hot', 'converted', 'lost')),
    assigned_to INTEGER REFERENCES users(id),
    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
    updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
    last_contacted TIMESTAMP,
    conversion_date TIMESTAMP
);

CREATE TABLE lead_activities (
    id SERIAL PRIMARY KEY,
    lead_id INTEGER REFERENCES leads(id) ON DELETE CASCADE,
    activity_type VARCHAR(50) NOT NULL,
    description TEXT,
    performed_by INTEGER REFERENCES users(id),
    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

CREATE TABLE lead_scoring_factors (
    id SERIAL PRIMARY KEY,
    lead_id INTEGER REFERENCES leads(id) ON DELETE CASCADE,
    factor_name VARCHAR(100) NOT NULL,
    factor_value DECIMAL(5,2),
    weight DECIMAL(3,2),
    contribution INTEGER,
    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

CREATE TABLE automation_workflows (
    id SERIAL PRIMARY KEY,
    name VARCHAR(200) NOT NULL,
    trigger_event VARCHAR(100) NOT NULL,
    conditions JSONB,
    actions JSONB,
    is_active BOOLEAN DEFAULT true,
    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
    last_executed TIMESTAMP
);

-- Indexes for performance
CREATE INDEX idx_leads_score ON leads(score DESC);
CREATE INDEX idx_leads_status ON leads(status);
CREATE INDEX idx_leads_industry ON leads(industry);
CREATE INDEX idx_leads_created_at ON leads(created_at DESC);
CREATE INDEX idx_lead_activities_lead_id ON lead_activities(lead_id);
CREATE INDEX idx_lead_activities_type ON lead_activities(activity_type);

-- Triggers for automatic timestamp updates
CREATE OR REPLACE FUNCTION update_updated_at_column()
RETURNS TRIGGER AS $$
BEGIN
    NEW.updated_at = CURRENT_TIMESTAMP;
    RETURN NEW;
END;
$$ language 'plpgsql';

CREATE TRIGGER update_leads_updated_at 
    BEFORE UPDATE ON leads 
    FOR EACH ROW 
    EXECUTE FUNCTION update_updated_at_column();

-- Views for analytics
CREATE VIEW lead_summary AS
SELECT 
    DATE_TRUNC('day', created_at) as date,
    COUNT(*) as total_leads,
    AVG(score) as avg_score,
    COUNT(CASE WHEN status = 'hot' THEN 1 END) as hot_leads,
    COUNT(CASE WHEN status = 'warm' THEN 1 END) as warm_leads,
    COUNT(CASE WHEN status = 'cold' THEN 1 END) as cold_leads,
    COUNT(CASE WHEN status = 'converted' THEN 1 END) as converted_leads
FROM leads
GROUP BY DATE_TRUNC('day', created_at)
ORDER BY date DESC;

REST API Design

RESTful endpoints with proper HTTP methods, status codes, error handling, and JSON responses following OpenAPI standards.

Database Integration

SQLAlchemy ORM, PostgreSQL optimization, database migrations, relationships, and complex query handling.

Machine Learning

Lead scoring algorithm, feature extraction, model training, prediction API, and continuous learning implementation.

Security & Validation

Input validation, SQL injection prevention, authentication middleware, rate limiting, and secure coding practices.

Live Workflow Automation

Experience the complete business process automation in action with real-time analytics, automated workflows, and intelligent decision making.

Lead Generation Analytics

0
Total Leads
0
Avg Score
0
Hot Leads
0%
Conversion Rate

Automated Workflows

High-Score Lead Assignment

Automatically assigns leads with score ≥80 to senior sales representatives and sends priority notifications.

Triggered: 0 times Active

Nurture Email Sequences

Warm leads (60-79 score) are automatically enrolled in targeted email nurture campaigns based on industry.

Triggered: 0 times Active

Weekly Reports

Generates and distributes weekly performance reports to stakeholders with key metrics and trends.

Next run: Sunday 9:00 AM Scheduled

Real-time Activity Log

Activity log will appear here as you interact with the system...